Core Mathematics 4 Paper H

1. Express

$$
\frac{x-10}{(x-3)(x+4)}-\frac{x-8}{(x-3)(2 x-1)}
$$

as a single fraction in its simplest form.
2. (i) Expand $(1+4 x)^{\frac{3}{2}}$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
(ii) State the set of values of x for which your expansion is valid.
3. A curve has the equation

$$
3 x^{2}+x y-2 y^{2}+25=0
$$

Find an equation for the normal to the curve at the point with coordinates $(1,4)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
4. The line l_{1} passes through the points P and Q with position vectors ($-\mathbf{i}-8 \mathbf{j}+3 \mathbf{k}$) and $(2 \mathbf{i}-9 \mathbf{j}+\mathbf{k})$ respectively, relative to a fixed origin.
(i) Find a vector equation for l_{1}.

The line l_{2} has the equation

$$
\mathbf{r}=(6 \mathbf{i}+a \mathbf{j}+b \mathbf{k})+t(\mathbf{i}+4 \mathbf{j}-\mathbf{k})
$$

and also passes through the point Q.
(ii) Find the values of the constants a and b.
(iii) Find, in degrees to 1 decimal place, the acute angle between lines l_{1} and l_{2}.
5. (i) Given that

$$
x=\sec \frac{y}{2}, \quad 0 \leq y<\pi,
$$

show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x \sqrt{x^{2}-1}} \tag{4}
\end{equation*}
$$

(ii) Find an equation for the tangent to the curve $y=\sqrt{3+2 \cos x}$ at the point where $x=\frac{\pi}{3}$.
6. A curve has parametric equations

$$
x=\frac{t}{2-t}, \quad y=\frac{1}{1+t}, \quad-1<t<2 .
$$

(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2}\left(\frac{2-t}{1+t}\right)^{2}$.
(ii) Find an equation for the normal to the curve at the point where $t=1$.
(iii) Show that the cartesian equation of the curve can be written in the form

$$
\begin{equation*}
y=\frac{1+x}{1+3 x} . \tag{4}
\end{equation*}
$$

7. (i) Find

$$
\begin{equation*}
\int x^{2} \sin x \mathrm{~d} x . \tag{5}
\end{equation*}
$$

(ii) Use the substitution $u=1+\sin x$ to find the value of

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \cos x(1+\sin x)^{3} \mathrm{~d} x . \tag{6}
\end{equation*}
$$

8.

The diagram shows a hemispherical bowl of radius 5 cm .
The bowl is filled with water but the water leaks from a hole at the base of the bowl. At time t minutes, the depth of water is $h \mathrm{~cm}$ and the volume of water in the bowl is $V \mathrm{~cm}^{3}$, where

$$
V=\frac{1}{3} \pi h^{2}(15-h) .
$$

In a model it is assumed that the rate at which the volume of water in the bowl decreases is proportional to V.
(i) Show that

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{k h(15-h)}{3(10-h)},
$$

where k is a positive constant.
(ii) Express $\frac{3(10-h)}{h(15-h)}$ in partial fractions.

Given that when $t=0, h=5$,
(iii) show that

$$
\begin{equation*}
h^{2}(15-h)=250 \mathrm{e}^{-k t} . \tag{6}
\end{equation*}
$$

Given also that when $t=2, h=4$,
(iv) find the value of k to 3 significant figures.

